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We study within Palatini formalism an f (R)-gravity with f (R) = R + αR2 interacting with a dilaton and
a special kind of nonlinear gauge field system containing a square-root of the standard Maxwell term,
which is known to produce confinement in flat space–time. Reformulating the model in the physical
Einstein frame we find scalar field effective potential with a flat region where the confinement dynamics
disappears, while in other regions it remains intact. The effective gauge couplings as well as the induced
cosmological constant become dynamical. In particular, a conventional Maxwell kinetic term for the
gauge field is dynamically generated even if absent in the original theory. We find few interesting classes
of explicit solutions: (i) asymptotically (anti-)de Sitter black holes of non-standard type with additional
confining vacuum electric potential even for the electrically neutral ones; (ii) non-standard Reissner–
Nordström black holes with additional constant vacuum electric field and having non-flat-space–time
“hedgehog” asymptotics; (iii) generalized Levi-Civita–Bertotti–Robinson “tube-like” space–times.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

In his analysis in Ref. [1] ‘t Hooft has shown that in any effec-
tive quantum gauge theory, which is able to describe linear con-
finement phenomena, the energy density of electrostatic field con-
figurations should be a linear function of the electric displacement
field in the infrared region. In particular, ‘t Hooft has developed
a consistent quantum approach in which the electric displacement
field appears as an “infrared counterterm” (see especially Eq. (5.10)
in second item in Ref. [1]).

The simplest way to realize these ideas in flat space–time was
proposed in Ref. [2] by considering the following special nonlinear
gauge theory:

S =
∫

d4xL
(

F 2), L
(

F 2) = −1

4
F 2 − f0

2

√
−F 2,
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F 2 ≡ Fμν F μν, Fμν = ∂μ Aν − ∂ν Aμ. (1)

It has been shown in the first three items in Ref. [2] that the
square root of the Maxwell term naturally arises as a result of
spontaneous breakdown of scale symmetry of the original scale-
invariant Maxwell action with f0 appearing as an integration con-
stant responsible for the latter spontaneous breakdown. For static
field configurations the model (1) yields an electric displacement

field �D = �E − f0√
2

�E
|�E| and the corresponding energy density turns

out to be 1
2
�E2 = 1

2 | �D|2 + f0√
2
| �D| + 1

4 f 2
0 , so that it indeed contains

a term linear w.r.t. | �D|. The model (1) produces, when coupled to
quantized fermions, a confining effective potential V (r) = − β

r +γ r
(Coulomb plus linear one with γ ∼ f0, see first item in Ref. [2])
which is of the form of the well-known “Cornell” potential [3] in
the phenomenological description of quarkonium systems.

To this end it is essential to stress that the Lagrangian L(F 2) (1)
contains both the usual Maxwell term as well as the non-analytic
square-root function of F 2 and thus it is a non-standard form
of nonlinear electrodynamics. It is significantly different from the
original “square root” Lagrangian − f

2

√
F 2 first proposed by Nielsen

and Olesen [4] to describe string dynamics. Also it is important
that the square root term in (1) is in the “electrically” dominated
form (

√−F 2) unlike the “magnetically” dominated Nielsen–Olesen
form (

√
F 2).

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.physletb.2012.11.028



Author's personal copy

1100 E. Guendelman et al. / Physics Letters B 718 (2013) 1099–1104

Let us remark that one could start with the non-Abelian version
of the action (1). Since we will be interested in static spherically
symmetric solutions, the non-Abelian theory effectively reduces to
an Abelian one as pointed out in the first item in Ref. [2].

Coupling of the nonlinear gauge field system (1) to ordinary
Einstein gravity was recently studied in [5] where the following in-
teresting new features of the pertinent static spherically symmetric
solutions have been found:

(i) Appearance of a constant radial vacuum electric field (in
addition to the Coulomb one) in charged black holes within
Reissner–Nordström–(anti-)de Sitter space–times, in particular, in
electrically neutral black holes with Schwarzschild–(anti-)de Sitter
geometry.

(ii) Novel mechanism of dynamical generation of cosmologi-
cal constant through the nonlinear gauge field dynamics of the
“square-root” gauge field term: Λeff = Λ0 + 2π f 2

0 with Λ0 being
the bare cosmological constant.

(iii) In case of vanishing effective cosmological constant
(Λ0 < 0, |Λ0| = 2π f 2

0 ) the resulting Reissner–Nordström-type
black hole, apart from carrying an additional constant vacuum
electric field, turns out to be non-asymptotically flat – a feature
resembling the gravitational effect of a hedgehog [6].

(iv) Appearance of confining-type effective potential in charged
test particle dynamics in the above black hole backgrounds (cf.
Eq. (43) below).

(v) New “tube-like” solutions of Levi-Civita–Bertotti–Robinson
[7] type, i.e., with space–time geometry of the form M2 × S2,
where M2 is a two-dimensional anti-de Sitter, Rindler or de Sitter
space depending on the relative strength of the electric field w.r.t.
the coupling f0 of the square-root gauge field term.

Let us also mention the recent paper [8] where coupling of
ordinary Einstein gravity to the pure “square-root” gauge field La-
grangian (L(F 2) = − f0

2

√−F 2 ) is discussed. A new interesting fea-
ture in this model is the existence of dyonic solutions.

In the present Letter we will consider f (R)-gravity1 with the
simplest nonlinear f (R) = R + αR2 coupled to dilaton φ and the
“square-root” nonlinear gauge system (1). The main purpose is
to study possible new features due to the combined effect of
the simultaneous presence of both the R2-gravity term and the
confinement-producing “square-root” of the Maxwell term. This
will be achieved by starting within the first-order (Palatini) formu-
lation of f (R)-gravity (e.g. [9,11]) and systematically deriving the
effective action of the full theory in the physical “Einstein” frame.
The resulting Einstein-frame action is of the form of standard Ein-
stein gravity interacting with a dilaton φ and the special nonlinear
gauge system with the square-root term (1), where all couplings
become dynamically dependent on φ. The latter include the effec-
tive strength of the standard Maxwell term, the effective coupling
constant of the square-root gauge field term and the effective cos-
mological constant. This, in particular, means:

(1) If we start with no standard Maxwell kinetic term in the
original theory, a nontrivial Maxwell Lagrangian term will never-
theless be dynamically generated with a φ-dependent strength in
the “Einstein” frame. The same is true about the dynamically gen-
erated cosmological constant out of a zero bare one.

(2) For certain regions of values for the constant dilaton φ

the effective coupling constant feff(φ) of the “square-root” gauge
field term will be vanishing indicating confinement/deconfinement
transition (let us recall that the coupling constant f0 in (1) mea-
sures the strength of the effective linear confining potential, see

1 For a recent review of f (R)-gravity see e.g. [9] and references therein. The first
R2-model (within the second order formalism), which was also the first inflationary
model, was proposed in [10].

first item in Ref. [2] and Eq. (43) below). The above mentioned
regions also correspond to flat regions of the effective scalar po-
tential. The latter could be used as regions in field space where
an inflationary phase for the universe took place according to the
requirements in the “new inflationary” scenarios [12].

(3) Furthermore, we find generalizations of the black hole and
“tube-like” space–time solutions mentioned in (v) above where
now their parameters are φ-dependent.

We particularly stress that both effects (1)–(2) are entirely due
to both parameters α (of R2-gravity) and f0 (of nonlinear “square-
root” gauge theory) simultaneously being non-zero.

Let us also mention a recent work [13] where an R2-gravity
interacting with Born–Infeld nonlinear electrodynamics has been
studied and new types of black hole solutions with different struc-
ture of the horizons and singularities have been found.

2. Derivation of Einstein-frame effective action of
R2-gravity-matter system

The action describing the coupling of f (R) = R + αR2 gravity
(possibly with a bare cosmological constant Λ0) to a dilaton φ and
the nonlinear gauge field system with a square-root of the Maxwell
term (1) known to produce QCD-like confinement in flat space–
time [2] is given by:

S =
∫

d4x
√−g

[
1

2κ2

(
f
(

R(g,Γ )
) − 2Λ0

)
+ L

(
F 2(g)

) + LD(φ, g)

]
, (2)

f
(

R(g,Γ )
) = R(g,Γ ) + αR2(g,Γ ),

R(g,Γ ) = Rμν(Γ )gμν, (3)

L
(

F 2(g)
) = − 1

4e2
F 2(g) − f0

2

√
εF 2(g), (4)

F 2(g) ≡ Fκλ Fμν gκμgλν, Fμν = ∂μ Aν − ∂ν Aμ, (5)

LD(φ, g) = −1

2
gμν∂μφ∂νφ − V (φ). (6)

In (2)–(3) Rμν(Γ ) indicates the Ricci curvature in the first order
(Palatini) formalism, i.e., the space–time metric gμν and the affine
connection Γ

μ
νλ are a priori independent variables. Further nota-

tions indicate: g ≡ det ‖gμν‖; the sign factor ε = ±1 in the square
root term in (4) corresponds to “magnetic” or “electric” domi-
nance; f0 is a positive coupling constant.

It is important to stress that:
(i) We will consider in what follows constant dilaton field, i.e.,

ignoring the kinetic term in (6).
(ii) We will be particularly interested in the special cases

Λ0 = 0 (no bare cosmological constant term) and/or e2 → ∞
in (4), i.e., a nonlinear gauge field action (4) without a bare
Maxwell term (L(F 2(g)) = − f0

2

√
εF 2(g)).

As we will show below, both a standard kinetic Maxwell term
for the gauge field with a variable φ-dependent strength as well
as a φ-dependent cosmological constant are dynamically generated
as a combined effect of the R2-gravity term and the nonlinear
“square-root” Maxwell term in (4).

The equations of motion resulting from the action (2) read:

Rμν(Γ ) = 1

f ′
R

[
κ2Tμν + 1

2
f
(

R(g,Γ )
)

gμν

]
,

f ′
R ≡ df (R)

dR
= 1 + 2αR(g,Γ ), (7)

∇λ

(√−g f ′
R gμν

) = 0, (8)
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∂ν

(√−g

[
1/e2 + ε

f0√
εF 2(g)

]
Fκλgμκ gνλ

)
= 0. (9)

About the dilaton, see Eq. (32) below. Here the total energy–
momentum tensor is given by:

Tμν =
[

L
(

F 2(g)
) + LD(φ, g) − 1

κ2
Λ0

]
gμν

+
(

1/e2 + ε f0√
εF 2(g)

)
Fμκ Fνλgκλ + ∂μφ∂νφ (10)

with L(F 2(g)) and LD(φ) as in (4)–(6).
Taking the trace of (7) and using the explicit form of f (R) in

(2) one gets for the Ricci scalar curvature:

R(g,Γ ) = −κ2T (g), T (g) = Tμν gμν. (11)

It can easily be shown (cf. [14]) that Eq. (8) leads to the rela-
tion ∇λ( f ′

R gμν) = 0 and thus it implies transition to the “physical”
Einstein-frame metrics hμν via conformal rescaling of the original
metric gμν :

gμν = 1

f ′
R

hμν, Γ
μ
νλ = 1

2
hμκ(∂νhλκ + ∂λhνκ − ∂κhνλ). (12)

Using (12) and taking into account (11) one can rewrite gravity
Eqs. (7) within the Einstein frame as follows (from now on all
space–time indices are raised/lowered by hμν ):

Rμ
ν (h) = κ2

[
1

f ′
R

T μ
ν (h) − 1

4

(
1 + 1

f ′
R

)
T (h)δ

μ
ν

]
, (13)

where:

Tμν(h) =
[
− 1

f ′
R

(
V (φ) + Λ0/κ

2) +
(

−1

2
f0

√
εF 2(h) − X(φ,h)

)

− f ′
R

1

4e2
F 2(h)

]
hμν +

[
f ′

R

e2
+ ε f0√

εF 2(h)

]
Fμκ Fνλhκλ

+ ∂μφ∂νφ, (14)

T (h) = Tμν(h)hμν = − f0

√
εF 2(h) + 2X(φ,h)

− 4
1

f ′
R

(
V (φ) + Λ0/κ

2), (15)

with short-hand notations:

F 2(h) ≡ Fκλ Fμνhκμhλν, X(φ,h) ≡ −1

2
hμν∂μφ∂νφ, (16)

and

f ′
R = [

1 + 2ακ2T (h)
]−1

= [
1 + 8α

(
κ2 V (φ) + Λ0

)]
× [

1 − 2ακ2( f0

√
εF 2(h) + hμν∂μφ∂νφ

)]−1
. (17)

Accordingly, using (17) the nonlinear gauge field Eqs. (9) become:

∂ν

(√
−h

[
1

e2
eff(φ)

+ ε feff(φ)√
εF 2(h)

]
Fκλhμκhνλ

)
= 0, (18)

where we introduced the dynamical couplings:

1

e2
eff(φ)

= 1

e2
− 2εακ2 f 2

0

1 + 8α(κ2 V (φ) + Λ0)
, (19)

feff(φ) = f0
1 + 4ακ2 X(φ,h)

1 + 8α(κ2 V (φ) + Λ0)
. (20)

Now, as an important step using the explicit expressions (14)–
(17) we can cast Eqs. (13) in the form of standard Einstein equa-
tions:

Rμ
ν (h) = κ2

(
Teff

μ
ν (h) − 1

2
δ
μ
ν Teff

λ
λ(h)

)
(21)

with energy–momentum tensor of the following form:

Teffμν(h) = hμν Leff(h) − 2
∂Leff

∂hμν
(22)

where (using notations (19)–(20)):

Leff(h) = − 1

4e2
eff(φ)

F 2(h) − 1

2
feff(φ)

√
εF 2(h)

+ X(φ,h)(1 + 2ακ2 X(φ,h)) − V (φ) − Λ0/k2

1 + 8α(κ2 V (φ) + Λ0)
. (23)

Thus, all equations of motion of the original f (R)-gravity/nonlinear-
gauge-field system (2)–(6) with metric gμν can be equivalently
derived from the following Einstein/nonlinear-gauge-field/dilaton
action:

Seff =
∫

d4x
√

−h

[
R(h)

2κ2
+ Leff(h)

]
, (24)

where R(h) is the standard Ricci scalar of the metric hμν and
Leff(h) is as in (23).

Let us particularly stress that in the absence of ordinary kinetic
Maxwell term in the original system (e2 → ∞ in (4)), such term
is nevertheless dynamically generated in the Einstein-frame action
(23)–(24):

Smaxwell = −1

2
ακ2 f 2

0

∫
d4x

√
−h

Fκλ Fμνhκμhλν

1 + 8α(κ2 V (φ) + Λ0)
, (25)

hence we will assume α > 0. The Maxwell term generation occurs
from the R2 term in the original theory in the process of passing
to the Einstein frame due to the on-shell relation (11) where a
non-zero trace of the energy–momentum tensor is produced by the
nonlinear “square-root” gauge field term: T (g) = − f0

√−F 2(g) +
(φ-contribution).

3. Non-Standard Black Hole Solutions

In what follows we will consider the case of constant dilaton φ

extremizing the effective Lagrangian (23), i.e., we will ignore the
kinetic X(φ,h)-terms in (23), and from now on we will concen-
trate on the “electric-dominant” case ε = −1:

Leff = − 1

4e2
eff(φ)

F 2(h) − 1

2
feff(φ)

√
−F 2(h) − V eff(φ). (26)

Here the effective scalar potential and the effective couplings in
(26) are explicitly given by:

V eff(φ) = V (φ) + Λ0
κ2

1 + 8α(κ2 V (φ) + Λ0)
, (27)

1

e2
eff(φ)

= 1

e2
+ 2ακ2 f 2

0

1 + 8α(κ2 V (φ) + Λ0)
, (28)

feff(φ) = f0

1 + 8α(κ2 V (φ) + Λ0)
. (29)

Since both f0 and feff(φ) (couplings of the “square-root” gauge
field terms) must be positive (they determine the strength of the
linear confining part in the effective “Cornell” potential, cf. first
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item in Ref. [2] and (43) below) we must have:

1 + 8α
(
κ2 V (φ) + Λ0

)
> 0. (30)

An important property of (26) is that the derivatives w.r.t. φ of
the dynamical couplings (28)–(29) are both extremized simultane-
ously with the extremization of the effective scalar potential (27):

∂ feff

∂φ
= −8ακ2 f0

∂V eff

∂φ
,

∂

∂φ

(
1

e2
eff(φ)

)
= −16α2κ4 f 2

0
∂V eff

∂φ
→ ∂Leff

∂φ
∼ ∂V eff

∂φ
. (31)

Therefore at the extremum of Leff (26) φ must satisfy:

∂V eff

∂φ
= V ′(φ)

[1 + 8α(κ2 V (φ) + Λ0)]2
= 0. (32)

There are two generic cases:
(a) Eq. (32) is satisfied for some finite-value φ0 being an ex-

tremum of the original potential V (φ):

V ′(φ0) = 0. (33)

(b) For polynomial or exponentially growing original V (φ), so
that V (φ) → ∞ when φ → ∞, we have:

∂V eff

∂φ
→ 0, V eff(φ) → 1

8ακ2
= const when φ → ∞, (34)

i.e., for sufficiently large values of φ we find a “flat region” in the
effective scalar potential (27). Also, in this case we have instead of
(28)–(29):

feff → 0, e2
eff → e2 (35)

and (26) reduces to:

L(0)

eff = − 1

4e2
F 2(h) − 1

8ακ2
. (36)

Now, the action (24) with the matter Lagrangian Leff(h) as in
(26) is of the same general form as the action of the model de-
scribing ordinary Einstein gravity interacting with the nonlinear
gauge field theory containing square root of the Maxwell term,
which was discussed in Ref. [5], with the only difference being
the substitutions of the ordinary parameters e2, f0,Λ0 with the
effective φ-dependent ones from (27)–(29), where the scalar field
φ is constant. Therefore, we can implement the same steps as
in [5] to find static spherically symmetric solutions of the sys-
tem (24), which is the effective Einstein-frame form of the original
f (R) = R + αR2-gravity/nonlinear-gauge-field theory (2).

The static radial electric field F0r contains both Coulomb (∼ 1
r2 )

as well as a constant non-zero vacuum piece (here and below
φ = const):

|F0r | =
(

1

e2
+ 2ακ2 f 2

0

1 + 8α(κ2 V (φ) + Λ0)

)−1

× f0/
√

2

1 + 8α(κ2 V (φ) + Λ0)
+ |Q |√

4πr2
. (37)

The solution for the Einstein-frame metric hμν reads:

ds2
h = −A(r)dt2 + dr2

A(r)
+ r2(dθ2 + sin2 θdϕ2), (38)

where:

A(r) = 1 − κ2|Q | f0√
8π [1 + 8α(κ2 V (φ) + Λ0)]

− 2mκ2

8πr

+
[

1

e2
+ 2ακ2 f 2

0

1 + 8α(κ2 V (φ) + Λ0)

]
κ2 Q 2

8πr2
− Λeff(φ)

3
r2,

(39)

with a total dynamical effective cosmological constant:

Λeff(φ) = Λ0 + κ2 V (φ) + κ2e2 f 2
0 /4

1 + 8α(Λ0 + κ2 V (φ) + κ2e2 f 2
0 /4)

(40)

and with a priori free mass parameter m.
Therefore, in the case of ordinary extremum of the effective

scalar potential (32)–(33) the properties of the solution depend on
the sign of the expression Λ0 +κ2 V (φ0)+κ2e2 f 2

0 /4, which deter-
mines the sign of Λeff(φ0). We find:

(i) For positive/negative values of Λ0 +κ2 V (φ0)+κ2e2 f 2
0 /4, so

that Λeff(φ0) > 0 (Λeff(φ0) < 0), the solution (37)–(40) describes
Reissner–Nordström–(anti-)de Sitter-type black hole carrying an
additional vacuum radial electric field with magnitude:

|Evac| =
(

1

e2
+ 2ακ2 f 2

0

1 + 8α(κ2 V (φ0) + Λ0)

)−1

f0/
√

2

1 + 8α(κ2 V (φ0) + Λ0)
. (41)

(ii) In the special case Λ0 + κ2 V (φ0) + κ2e2 f 2
0 /4 = 0 when

Λeff(φ0) = 0, the solution (37)–(40) yields a Reissner–Nordström-
type non-standard black hole which, apart from carrying the
additional vacuum radial electric field (41), exhibits non-flat
“hedgehog”-type space–time asymptotics [6]:

A(r)|r→∞ � 1 − κ2|Q | f0√
8π [1 + 8α(κ2 V (φ0) + Λ0)]

< 1. (42)

(iii) In the case of anti-de Sitter or hedgehog-type asymptotics
the condition Λ0 + κ2 V (φ0) + κ2e2 f 2

0 /4 � 0 together with (30)
implies an upper bound for α: α < (2κ2e2 f 2

0 )−1.
(iv) Following the same steps as in Section 4 of first item in

Ref. [5] we find a linear (w.r.t. r) confining piece in the effective
potential of test charged particle dynamics in the above black hole
backgrounds:
√

2E|q0|
m2

0

eeff(φ0) feff(φ0)r, (43)

where E,m0,q0 are energy, mass and charge of the test particle
and the effective gauge field couplings are as in (28)–(29).

On the other hand, in the case of “flat region” for the effec-
tive scalar potential (34)–(35) the solution (37)–(40) reduces to an
ordinary Reissner–Nordström–de Sitter black hole:

|F0r | = |Q |√
4πr2

, A(r) = 1 − 2m

r
+ κ2 Q 2

8πr2
− 1

24α
r2, (44)

with an induced cosmological constant Λeff = 1/8α, which is com-
pletely independent of the bare cosmological constant Λ0. Moreover,
in the regime (35) the linear confining potential for the test parti-
cles (43) disappears.

4. Generalized Levi-Civita–Bertotti–Robinson solutions

Following the same steps as in second and third items in
Ref. [5] we can find explicit static solutions of generalized Levi-
Civita–Bertotti–Robinson (LCBR) type [7] of the system (24)–(26).
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For definiteness we will concentrate on the case of “electric domi-
nance” and for simplicity we will use units with Newton constant
G N = 1, i.e., κ2 = 8π , and e2 = 1. These generalized LCBR-type
space–times are “tube-like” solutions with space–time geometry of
the form M2 × S2 where M2 is some two-dimensional manifold
with coordinates (t, η):

ds2
h = −A(η)dt2 + dη2

A(η)
+ r2

0

(
dθ2 + sin2 θdφ2),

−∞ < η < ∞, r0 = const. (45)

and with a constant radial static electric field:

F0η = cF = arbitrary const. (46)

The Einstein equations corresponding to (24)–(26) yield the fol-
lowing relation for r0:

1

r2
0

= 4π

1 + 8αΛ(φ0)

[(
1 + 8α

(
Λ(φ0) + 2π f 2

0

))
c2

F + 1

4π
Λ(φ0)

]
(47)

with the short-hand notation Λ(φ0) ≡ 8π V (φ0) + Λ0, and the fol-
lowing simple differential equation for the metric coefficient A(η)

in (45):

∂2
η A(η) = 8π

1 + 8αΛ(φ0)
K (cF ), (48)

K (cF ) ≡ (
1 + 8α

(
Λ(φ0) + 2π f 2

0

))
c2

F − √
2 f0|cF | − 1

4π
Λ(φ0).

(49)

In the case of “flat region” of the effective scalar potential (34)
Λ(φ0) → ∞, so that Eqs. (47)–(48) simplify:

1

r2
0

= 4πc2
F + 1

8α
, ∂2

η A(η) = 8πc2
F − 1

4α
. (50)

As in last item in Ref. [5], there are three distinct types of gen-
eralized LCBR solutions depending on the sign of the factor K (cF )

in (48)–(49).
(A) AdS2 × S2 with strong constant vacuum electric field

F0η = cF , where AdS2 is two-dimensional anti-de Sitter space with:

A(η) = 4π K (cF )η2, K (cF ) > 0, (51)

in the metric (45), η being the Poincare patch space-like coordi-
nate. The magnitude |cF | of the vacuum electric field must satisfy
the inequalities:

|cF | > f0√
2[1 + 8α(Λ(φ0) + 2π f 2

0 )]

×
[

1 +
√

1 + Λ(φ0)

2π f 2
0

[
1 + 8α

(
Λ(φ0) + 2π f 2

0

)]]
(52)

for Λ(φ0) > max{−2π f 2
0 ,− 1

8α };

c2
F >

|Λ(φ0)|
4π [1 + 8α(Λ(φ0) + 2π f 2

0 )] ,

for − 1

8α
< Λ(φ0) < −2π f 2

0 . (53)

In the “flat region” case (50) |cF | > (32πα)− 1
2 .

(B) Rind2 × S2 with constant vacuum electric field F0η = cF

when the factor K (cF ) = 0. Here Rind2 is the flat two-dimensional
Rindler space with:

A(η) = η for 0 < η < ∞ or

A(η) = −η for − ∞ < η < 0 (54)

in the metric (45) and:

|cF | = f0√
2[1 + 8α(Λ(φ0) + 2π f 2

0 )]

×
[

1 +
√

1 + Λ(φ0)

2π f 2
0

[
1 + 8α

(
Λ(φ0) + 2π f 2

0

)]]
(55)

for Λ(φ0) > max{−2π f 2
0 ,− 1

8α }. In the “flat region” case (50)

|cF | = (32πα)− 1
2 .

(C) dS2 × S2 with weak constant vacuum electric field F0η = cF ,
where dS2 is two-dimensional de Sitter space with:

A(η) = 1 − 4π |K (cF )|η2, K (cF ) < 0, (56)

in the metric (45). The magnitude |cF | of the vacuum electric field
must satisfy:

|cF | < f0√
2[1 + 8α(Λ(φ0) + 2π f 2

0 )]

×
[

1 +
√

1 + Λ(φ0)

2π f 2
0

[
1 + 8α

(
Λ(φ0) + 2π f 2

0

)]]
, (57)

where Λ(φ0) > max{−2π f 2
0 ,− 1

8α }. In the “flat region” case (50)

|cF | < (32πα)− 1
2 .

5. Discussion

In the present Letter we have considered f (R) = R + αR2-
gravity within the first-order (Palatini) formalism coupled to dila-
ton and a special kind of nonlinear gauge field system containing a
square-root of the standard Maxwell term, which is known to pro-
duce a QCD-like confinement. We have derived the explicit form of
the dynamically equivalent “physical” Einstein-frame effective the-
ory displaying the following significant properties:

(i) The effective gauge field couplings as well as the effective
cosmological constant become functions of the constant dilaton in
such a way that even in the event of absence of kinetic Maxwell
term for the gauge field and/or absence of bare cosmological con-
stant in the original theory, the latter are nevertheless dynamically
generated in the Einstein-frame effective theory.

(ii) There are two interesting regimes for the constant dila-
ton φ: (a) either as a minimum of the bare scalar potential at
some finite value φ0, which coincides with the minimum φ0 of
the effective scalar potential in the Einstein-frame theory, or (b) φ

belongs to a “flat region” of the effective scalar potential, which
corresponds to a fast growing at infinity bare scalar potential. In
the first case the effective coupling of the confinement-producing
“square-root” gauge field term remains finite, whereas in the sec-
ond case it vanishes and so does the confining feature. This picture
resembles the “MIT bag” structure [15] where inside the “bag” a
regular gauge-field dynamics holds, while outside the “bag” the
gauge fields are confined. Moreover, the effective dilaton potential
with a “flat region” can be used for inflation.

(iii) The effective coupling constants in the Einstein-frame the-
ory satisfy the “least coupling principle” of Damour and Polyakov
[16], namely, any extremal point φ0 of the scalar effective potential
(as function of the dilaton) is simultaneously an extremal point of
the effective gauge couplings. This property is crucial for the con-
sistency of the solutions here obtained.
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(iv) We derived new solutions describing non-standard black
holes and Levi-Civita–Bertotti–Robinson-type “tube-like” space–
times, generalizing those found in [5], in that now the pertinent
constant vacuum electric fields and the non-flat “hedgehog” space–
time asymptotics depend on the dilaton value φ0.

Let us also point out that an R2-gravity theory coupled to non-
linear gauge field system with Maxwell and “square-root” terms
and a dilaton was earlier studied in the context of the so called
two-measure gravity models in Ref. [17]. The results there about
the explicit form of the Einstein-frame effective theory resembles
those obtained in the present Letter.
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